第一部分 目標與基本要求
要求考生比較系統的理解高等數學的基本概念和基本理論,掌握高等數學的基本方法。要求考生具有抽象思維能力、邏輯推理能力、空間想象能力、運算能力和綜合運用所學的知識分析問題和解決問題的能力。
第二部分 內容與考核目標
一、函數、極限、連續
1.理解函數的概念,掌握函數的表示法,并會建立簡單應用問題中的函數關系式。
2.了解函數的有界性、單調性、周期性和奇偶性。
3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念。
4.掌握基本初等函數的性質及其圖形,了解初等函數的概念。
5.理解極限的概念,理解函數左極限與右極限的概念,以及函數極限存在與左、右極限之間的關系。
6.了解極限的性質,掌握極限的四則運算法則。
7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法。
8.理解無窮小、無窮大的概念,會用無窮小的比較方法,掌握等價無窮小求極限的方法。
9.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型。
10.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質。
二、一元函數微分學
1.理解導數和微分的概念,理解導數與微分的關系,理解導數的幾何意義,會求平面曲線的切線方程和法線方程,了解導數的物理意義,會用導數描述一些物理量,理解函數的可導性與連續性之間的關系。
2. 掌握導數的四則運算法則和復合函數的求導法則,掌握基本初等函數的導數公式,了解微分的四則運算法則和一階微分形式的不變性,會求函數的微分。
3.了解高階導數的概念,會求簡單函數的n階導數。
4.會求分段函數的一階、二階導數。
5.會求隱函數和由參數方程所確定的函數以及反函數的導數。
6.理解并會用羅爾定理、拉格朗日中值定理,了解并會用柯西中值定理和泰勒定理。
7.理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數最大值和最小值的求法及其簡單應用。
8.會用導數判斷函數圖形的凹凸性,會求函數圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數的圖形。
9.掌握用洛必達法則求未定式極限的方法。
三、一元函數積分學
1.理解原函數概念,理解不定積分和定積分的概念。
2.掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法。
3.會求有理函數、三角函數有理式及簡單無理函數的積分。
4.理解積分上限的函數,會求它的導數,掌握牛頓一萊布尼茨公式。
5.了解廣義積分的概念,會計算廣義積分。
6.掌握用定積分表達和計算一些幾何量(平面圖形的面積、平面曲線的弧長、旋轉體的體積、平行截面面積為已知的立體體積)等。
四、向量代數和空間解析幾何
1. 理解空間直角坐標系,理解向量的概念及其表示。
2.掌握向量的運算(線性運算、數量積、向量積、混合積),了解兩個向量垂直、平行的條件。
3.理解單位向量、方向數與方向余弦、向量的坐標表達式,掌握用坐標表達式進行向量運算的方法。
4.掌握平面方程和直線方程及其求法。
5.會求平面與平面、平面與直線、 直線與直線之間的夾角,并會利用平面、直線的相互關系(平行、垂直、相交等)解決有關問題。
6.會求點到直線以及點到平面的距離。
7. 了解曲面方程和空間曲線方程的概念。
8. 了解常用二次曲面的方程及其圖形,會求以坐標軸為旋轉軸的旋轉曲面及母線平行于坐標軸的柱面方程。
9. 了解空間曲線的參數方程和一般方程.了解空間曲線在坐標平面上的投影,并會求該投影曲線的方程。