前面我們已經介紹了等價無窮小替換公式的應用及注意事項,接下來,跨考教育數學教研室佟老師為大家繼續說說極限的計算方法。
極限的第三種方法就是洛必達法則。首先,要想在極限中使用洛必達法則就必須要滿足洛必達法則,說到這里有很多同學會打個問號,什么法則,不就是上下同時求導?其實不盡然。
洛必達有兩種,無窮比無窮,零比零,分趨近一點和趨近于無窮兩種情況,以趨近于一點來說明法則條件,
條件一:零比零或者無窮比無窮(0/0,∞/∞);條件二:趨近于這一點的去心領域內可導,且分母導數不為零;條件三:分子導數比分母導數的極限存在或者為無窮,則原極限等于導數比的極限。
在這里要注意極限計算中使用洛必達法則必須同時滿足這三個條件,缺一不可,特別要注意條件三,導數比的極限一定是存在或者為無窮,不能把無窮認為是極限不存在,因為極限不存在還包括極限不存在也不為無窮這種情況,比如:x趨近于零,sin(1/x)的極限不存在也不為無窮。每次使用都必須驗證三條件是否同時滿足。
再來看看重要極限,重要極限有兩個,一個是x趨近于零時,sinx/x趨近于零,另一個是x趨近于零時,(1+x)1/x趨近于e,或者寫成x趨近于無窮,(1+1/x)x趨近于e(1∞形式),總結起來就是(1+無窮小量)無窮小量的倒數,所以要記住重要極限的特點,并可以將其推廣,即把x換成f(x),在f(x)趨近零,sinf(x)/f(x)趨近于零,(1+f(x))1/f(x)趨近于e,或f(x)趨近無窮,(1+1/f(x))f(x)趨近于e,還要注意當給你冪指函數的極限計算,先要判斷他是不是1∞形式,如果是,就可以考慮利用重要極限解決,湊出相應的形式就可以得出結論。
這里還要特別的提一下幾個未定式(∞-∞,0·∞,1∞,00,∞∞),這五個未定式需要轉化為0/0或∞/∞,其中∞-∞可以通過通分、提取或者代換將其轉化,0·∞可以將0或者∞放在分母上,以實現轉化,1∞,00,∞∞利用對數恒等變化來實現轉化,其中1∞還可以利用重要極限計算。
綜上所述,等價無窮小替換和重要極限要掌握基本公式和推廣,可以將任意變形公式轉化為標準形式,并且給定一個極限首要任務就是利用等價無窮替換公式化簡。洛必達法則處理七種未定式,靈活地將不同形式的極限轉化為0/0或∞/∞,計算時注意滿足洛必達法則的三個條件,希望同學們可以掌握基礎,靈活地解決不同類型的極限。