試卷有5道選擇題,每題2分,7道大題(其中最后一道大題為現代控制理論),每題20分,共計150分。
一.單選
1.傳遞函數初始條件的定義()
A.輸入及其各階導為零;
B.輸出及其各階導為零;
C.輸入、輸出及其各階導為零;
2.奈氏曲線w0_到w0+的處理()
A.順時針旋轉π;
B.順時針旋轉2π;
C.逆時針旋轉π;
D.逆時針旋轉2π;
3.已知一個二階常見系統,下面選項正確的是()
A.阻尼比不變,無阻尼正當頻率,超調增大;
B.阻尼比越大,震蕩頻率越??;
C.阻尼比越大,諧振峰值越大;
4.期望極點比原系統極點小,如何處理()
A.微分校正;
B.滯后校正;
C.超前校正;
5.不記得了;
二.過程控制系統建模(為2002年原題,不過加了一個干擾信號Qd)
圖可參照2002年真題的圖
(1.)H2(S)/Qi(S),Qd(S)/H2(S);
(2.)已知Qi、Qd都為單位階躍響應,求系統穩態誤差。
三.已知二階系統閉環傳遞函數為G(s)=K/(s2+Ks+K),求
(1.)系統振蕩時的K值范圍,最大無阻尼振蕩頻率K值,超調與K值之間的關系;
(2.)畫出系統在K>0時的跟軌跡,并求阻尼比>=0.5時的K值范圍。
四.已知系統傳遞函數為G(s)=4/(s2-s+4)(我認為應該是閉環傳遞函數),現要求滿足以下條件:①單位階躍響應的穩態誤差為0;②單位速度輸入的穩態誤差小于0.1;③系統閉環穩定,串聯三個系統分別為:
(1.)PI控制器:Gc1(s)=K(Ts+1)/s;
(2.)PID控制器:Gc2(s)=T(s2+4K1s+4K2)/s;
(3.)PID控制器:Gc3(s)=0.3(s2+K1s+K2)/s。
五.已知單位反饋開環傳遞函數為G(s)=1/s2(s+5),要求相角裕量>=50度,幅值裕量>=10dB,設計超前校正網絡Gc=Kc(1+Ts)/(1+aTs),求Kc,a,T。
六.跟軌跡矯正,單位反饋開環傳遞函數為G(s)=1/s(s+2)(s+5),使閉環極點配置為是s1,2=1+根號3j,1-根號3j。
七.非線性系統繪制相軌跡,非線性環節為:y=2(m>=2),m(-2<m<2),-2(m<=-2),線性系統傳遞函數為G(s)=1/(s2+2s)
八.A=(2,1;0,1),B=(0,1),C=(1,1)
(1.)觀測器極點配置-4,-5,并求狀態方程與輸出方程;
(2.)G=(-3,-4),求系統傳遞函數,判斷哪些模態不可控,哪些模態不可觀測;
(3.)繪制系統的模擬結構圖。
相關文章:考試報道:2014年全國碩士研究生入學考試專題報道考研現場:2014年考研第一現場進入論壇與研友交流 試題回憶:2014年考研試題回憶